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The generic behavior of vacuum inhomogeneous and spatially homogeneous 
Kaluza-Klein models is studied in the vicinity of the cosmological singularity. 
It is shown that, in space-time dimensions ->11, the generalized Kasner solution, 
with monotonic power-law behavior of the spatial distances, becomes a general 
solution of the Einstein vacuum field equations and that, moreover, the chaotic 
oscillatory behavior disappears. 

On the other hand, the chaotic oscillatory behavior, absent in diagonal 
spatially homogeneous cosmological models in space-time dimensions between 
5 and 10, can be reestablished when off-diagonal terms are included. 

1. I N T R O D U C T I O N  

'Recent  in teres t  in the  uni f ica t ion  of  the  f u n d a m e n t a l  in te rac t ions  has 
revived  in teres t  in g rav i t a t iona l  theor ies  in h ighe r -d imens iona l  space- t imes ,  
in the  l ine o f  the o ld  5 -d imens iona l  K a l u z a - K l e i n  theory  (Kaluza ,  1921; 
Kle in ,  1926). Our  usual  3 + 1  space- t ime  does  not  seem big enough  to 
a c c o m m o d a t e  t oday ' s  gauge  theor ies  o f  pa r t i c le  phys ics :  ten or  e leven 
d imens ions  are r equ i red  by  supers t r ing  and  supergrav i ty  theor ies ,  respec-  
t ively. In  this f r amework ,  a new d o m a i n  o f  cosmology  has deve loped :  the 
s tudy  o f  the  dynamics  of  m u l t i d i m e n s i o n a l  cosmolog ica l  models .  

A d o p t i n g  this po in t  o f  view and  assuming  accord ing ly  that  the space-  
t ime of  ou r  universe  can  be  desc r ibed  by  a p s e u d o - R i e m a n n i a n  m a n i f o l d  
o f  d i m e n s i o n  d + 1, with a met r ic  sat isfying Eins te in ' s  field equa t ions  (which  
is a m in ima l  a s s u m p t i o n  o f  most  o f  the recent ly  p r o p o s e d  unif ied theor ies) ,  
we are  led  to ask  the fo l lowing  ques t ion:  are the  f u n d a m e n t a l  geomet r i c  
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properties of general relativistic four-dimensional cosmological models 
conserved for any value of the space dimension d ? 

In particular, it is well known that one of the outstanding results in 
four-dimensional theoretical cosmology, due to Belinskii et al. (1970), 5 is 
that the general solution to the gravitational field equations in the vicinity 
of the initial cosmological singularity is an inhomogeneous generalization 
of the "Mixmaster universe." The Mixmaster universe (Misner, 1969) is a 
spatially homogeneous diagonal model whose homogeneity group is SO(3) 
and which exhibits chaotic properties. Besides this generic solution, a 
similar inhomogeneous generalization of the well-known Kasner solution 
contains one arbitrary function less than the generalized Mixmaster metric 
(Khalatnikov and Lifshitz, 1963). This latter solution is nonchaotic. 

Do these four-dimensional qualitative features of a generic solution near 
the initial singularity remain valid in higher-dimensional Kaluza-Klein cos- 
mologies? This question is far from trivial, in the sense that it has been 
repeatedly observed, both in supergravity and superstring models, that 
particular properties true in particular space-time dimensions do not 
necessarily hold in other dimensions. Moreover, this problem is of great 
importance in the context of the spontaneous compactification hypothesis, 
since the alleged decoupling between the ordinary expanding 3-space and 
a (d -3)  compact manifold of a size of the order of Planck's length could 
be hindered by the eventual presence of chaos in the generic solutions of 
(d + 1)-dimensional Einstein field equations. 

In the following sections, we describe recent work settling the question 
of the general behavior of vacuum inhomogeneous as well as spatially 
homogeneous multidimensional cosmological models in the neighborhood 
of the initial cosmological singularity. 

2. EXISTENCE OF A CRITICAL SPACE-TIME DIMENSION 
FOR THE GENERAL BEHAVIOR OF VACUUM 
INHOMOGENEOUS KALUZA-KLEIN COSMOLOG!ES 

As a first result, we have shown that, contrary to previous expectations, 
the generalized Kasner solution, with monotonic power-law behavior of the 
spatial distances, becomes a general solution of Einstein's field equations near 
the cosmological singularity in space-time dimensions ->11 (Demaret et al., 
1985a). 

The generalized Kasner solutions reads 
d 

ds 2=-d t2+ ~ t2p'Ixl(wi) 2 (1) 
i=l  

SFor a controversial discussion of the reality of the alleged generality of  this solution see 
Barrow and Tipler (1979, 1981), Belinskii et al. (1980), and  ter Haar (1981). 
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where d is the number of spatial dimensions and p;(x) are d time-indepen- 
dent functions of the spatial coordinates submitted to the Kasner conditions 

d d 

pi(x) = 1= E p~(x) (2) 
i = l  i - -1  

where the t ime-independent forms to; are arbitrary. 
In the vicinity of  the initial singularity (t ~ 0), the time derivative terms 

in the vacuum Einstein equation ca+ l~ G o and ~d+ 1) G~, are with (1) potentially 
of order t -2, just as in four dimensions (Khalatnikov and Lifshitz, 1963). 
In order for the metric (1) to satisfy these field equations, the spatial 
gradients present in the spatial curvature term should be negligible, which 
is possible only if 

l i r a  t 2 (a)R~ = 0 (3) 
t ~ 0  

where <a~R~b is the d-dimensional spatial Ricci tensor. 
The leading terms of t 2 ~a)R~ contain the powers t2% k, where the 

exponents auk are given by 

aijk = 2pi + ~ p; (4) 
I #  i , j , k  

with i # L  i ~ k ,  j g k .  
If the number of spatial dimensions is less than 10, it can be shown 

that there does not exist any open region of the "Kasner  sphere" defined 
by (2), where all exponents auk would be positive (Demaret et al., 1985a). 
On the other hand, for d -> 10, these exponents are all strictly positive in a 
suitable neighborhood of p l = p 2 = p 3 = ( 1 - x / ~ ) / l O  and p4=P5 . . . . .  
p~o= ( 7 + 3 , ~ i ) / 7 0 .  The existence of negative exponents c~ijk, leading to 
divergent terms in the field equations, restricts the generality of the general- 
ized Kasner solution by requiring the introduction of "extra" conditions 
on the components of the 1-forms w i and on their derivatives: these condi- 
tions express that the coefficients of t 2%k with negative aijk in t 2 ~a)R~ are 
absent. This is what happens in four space-time dimensions (d = 3) as well 
as for 4 < d  < 10. 

On the other hand, if the exponents auk are all positive, it is easily 
checked that the d(d + 1) arbitrary functions appearing in the metric (1) 
are linked by d constraints, i.e., the (d+~)G~ equations and by the two 
relations (2) defining the Kasner (d -2 ) - sphere .  If we also take into account 
the possibility of fixing d functions of the coordinates characterizing the 
residual invariance of (1), i.e., spatial reparametrization, we are left with 
d(d + 1) - d - 2  - d = (d + 1)(d - 2 )  physically distinct arbitrary functions 
in (1): this number is equal to twice the number of degrees of freedom of 
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the gravitational field (spin 2-field) in ( d +  1) spacetime dimensions. The 
Kasner  generalized metric (1) becomes, then, when d >- 10, a general solution 

o f  the vacuum Einstein equations, in the neighborhood o f  the singularity. 
Incidentally, this result indicates that a general solution to the vacuum 
gravitational field equations in d +  1 dimensions cannot necessarily be 
interpreted in four dimensions as describing the coupled Einstein-Yang- 
Mills-Scalar system, for which it is known that the oscillatory behavior 
exists (Belinskii and Khalatnikov, 1973). 

3. DISAPPEARANCE OF THE CHAOTIC OSCILLATION 
BEHAVIOR FOR VACUUM I N H O M O G E N E O U S  
KALUZA-KLEIN COSMOLOGICAL MODELS IN 
SPATIAL DIMENSIONS d_> 10. 

The question is now whether, besides the generalized Kasner solution, 
the oscillatory "mixmaster" behavior found by Belinskii et al (1970) and 
Misner (1969) remains stable for d -> 10. It would not be so if initial data 
of the Mixmaster type led, after a finite member of curvature-induced 
collisions, to Kasner exponents which belong to the Kasner stability region. 

Initial data chosen at random will of course not ensure the positivity 
of all the exponents (4). Then, the influence of some spatial curvature terms 
grows as one goes toward the singularity. These terms cannot be neglected 
and eventually modify the metric, giving rise to a succession of Kasnerian 
regimes connected by a collision law which can be described as follows. If 
the exponents Pl,  �9 �9 �9 Pe (arranged in increasing order) define on the Kasner 
sphere (2) a point outside the stability region %k >0 ,  Vij.k, then these 
exponents will transform, for t-+ 0, into a set of d new Kasner exponents 
P ' 1 , . . . , P }  given by 

P'I, P~ , - - - ,  P} = ordering o f (q l ,  �9 �9 �9 qd) 

with 

q l = - ~ r  l(p l + p )  

q2 = - -7g ' - Ip2 

(5) 

q d - 2  = 7 r - lPd  2 

qd-~ = rr-l(2Pl +Pa-1 + P) 

(6) 

q~ = rr-l(2pl +p~ + P) 
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where 

and 

d - 2  

P = ~  Pi 
i=2  

~" = 1 +2pl + P (7) 

The qi given by (6) are in general not in increasing order. This is why 
it is necessary to reorder them in order to get the new Kasner exponents, 
p'i. It is this rearrangement which makes the transformation (5)-(7) non- 
trivial. 

Now, if the Pl are such that all the new c~,~k are positive, the oscillatory 
regime ceases. If, on the contrary, some c~,~k are negative, then the "collision 
process" goes on until one reaches Kasner exponents which belong to the 
Kasner stability region. So, the question raised above becomes: Does 
repeated application of the collision law (5), (6) map almost all initial data 
into the region c~jk > 07 

From a theoretical study and a numerical analysis of the properties of 
the transformation (5)-(7) carried for d = 10, we have argued that the Kasner 
stability region is the most likely target for this mapping (Demaret et al., 
1986). This numerical study, based on 105 initial data p~ chosen at random 
on the Kasner sphere, has led, for each set of  p~, to a final situation free 
from oscillations (Demaret et al., 1986). 

A full theoretical proof  of the permanence of chaos for space-time 
dimensions -< 10 and its disappearance for d + 1 -> 11 has, however, recently 
been constructed (Elskens and Henneaux, 1987a, b; Elskens, 1987). One of 
the main ingredients of  this proof, which makes it successful, is the introduc- 
tion, for any space-time dimension, of a new parametrization of the Kasner 
exponents which reduces the Mixmaster dynamics to a combination of a 
translation and an isometry or dilating inversion. In particular, in the case 
of five space-time dimensions, a Markov partition has been constructed and 
a generalized K-property proven, while for d-< 9, it has been possible to 
show that the Mixmaster map is ergodic and topologically mixing. By 
constrast, for d-> 10, the Mixmaster map reduces to the identity after a 
finite number of iterations, except for a set of initial data with zero Lebesgue 
measure. 

On the basis of  these results, it is clear that the chaotic oscillatory 
behavior is no longer generic for d >-10, and that this regime is replaced by 
the monotonic generalized behavior, which should make the dynamical 
scenario of  dimensional reduction considered by Chodos and Detweiler 
(1980) more plausible, in this last case. At the same time, it appears that 
Kasner exponents can be used to characterize spacelike singularities for 
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d -> 10, and could therefore yield appropriate quantum numbers to specify 
the "in-states" coming out a singularity (Henneaux et aL, 1982). 

The validity of this conclusion has been confirmed by a Hamiltonian 
analysis, in the framework of  the ADM formalism for general relativity, of 
the approach to a space-time singularity of  a general inhomogeneous uni- 
verse in an arbitrary number of dimensions (Hosoya et al., 1987; Jantzen, 
1987). 

4. THE CASE OF KALUZA-KLEIN SPATIALLY H O M O G E N E O U S  
COSMOLOGICAL MODELS 

Spatially homogeneous cosmological models (including Bianchi as well 
as Friedmann-Robertson-Walker  models) play a major role in today's 
research in theoretical cosmology. It is thus of direct interest to investigate 
whether the preceding conclusions concerning the occurrence of chaos in 
multidimensional inhomogeneous models hold in simpler homogeneous 
models. 

The beginning of an answer to this question has been given in particular 
cases (Furusawa and Hosoya, 1985; Barrow and Stein-Schabes, 1985; 
Tomimatsu and Ishihara, 1986; Ishihara, 1985; Halpern, 1986; Demianski 
et al., 1986, 1987), where no chaos was found in some diagonal solutions. 
This result has been generalized in Demaret et al. (1986), where it was 
explained that homogeneous solutions which are diagonal in the canonical 
basis do not fulfil the criterion necessary to generate the oscillatory behavior 
and hence are unable to mimic the full complexity of inhomogeneous 
cosmologies. This has been explicitly confirmed in Jensen (1987). Hence, 
it appears that if one insists on diagonal models, inhomogeneities are 
necessary to trigger the oscillations for spacetime dimensions d + 1, with 
4 -  < d-< 9, and thus play a more important role for d > 3 than they do for 
d = 3 .  

These results, however interesting they may be, nevertheless open the 
question of  the behavior of  non-diagonal homogeneous solutions. Since 
diagonal models are extremely peculiar for d > 3 and generically correspond 
to initial data forming a set of measure zero (Jantzen, 1986, 1987), the 
answer to this question is not entirely immediate. 

The main result that we have obtained is that the inclusion ofnondiagonal 
terms in spatially homogeneous models restores the oscillatory behavior, pro- 
vided the homogeneity group is not trivial (Demaret et al., 1988). 

The homogeneity assumption implies that the metric is given, for this 
class of models, by 

ds2 = -d t2  + gu( t )c~ ic~J (8) 



Are Kaluza-Klein Models of the Universe Chaotic? 1 0 7 3  

where the o3' are t ime-independent canonical bases invariant under the 
group transformations, 

ddi l l ~ i  o j  =- -~ jk tO  A t3 k (9) 

and where the metric g~(t) depends only on time and may contain off- 
diagonal terms (Jantzen, 1986, 1987; Ryan and Shepley, 1975; Demaret 
et aL, 1985). 

The Einstein dynamical equations are first-order differential equations 
with respect to time for the metric go(t) and the extrinsic curvature K~(t), 

g:j = -2K~j 
(10) 

(~/-g K { ) ' / x / g -  PC = 0 

Here, P,J is the spatial curvature of the d-dimensional metric g~jaSia5 J 

pu c d ~ d  c --O'idcr j~ -- C dcO'ij (11) 

c l l ~ ' c  - -  ~ dc o e dc 
O" 0 = ~ , t - -  ij"l- C ' j d g e i g  - -  C d i g e j g  ) (12) 

and the spatial indices are raised or lowered with &j. 
The general solution of (10) is completely determined by d ( d + l )  

initial data at a given "initial" time to. These initial data are not completely 
arbitrary, since they should obey the constraint equations 

(KJr -/r (P=-PI) (13) 
nan ~  r ~  

( ~ i C t m )  = 0  g K , r (Cm, -  (14) 

The number of independent equations contained in (14) depends on 
the homogeneity group under consideration. 

In order to investigate the qualitative properties of the solutions of (8), 
it is convenient to redefine the dynamical variables as follows. By a linear 
transformation of  the invariant bases ~ o0, one can simultaneously diagonalize 
&j and Ko, 

d 

ds2=-dt2+ E a~(t)(w') 2 (15) 
i= l  

d 
K o~ oj ,jto w = ~, k~(t)(to') 2 (16) 

i = 1  

to/= Aj(t)o~ j (17) 

The axes which achieve this diagonalization are generically time dependent 
and will be referred to as the "Kasner  axes." The frame to i is determined 
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up to rescalings of the distances along the axes. We will choose a time- 
independent scale, i.e., we will impose the conditions 

(AA')I= 1 (18) 

(for each i), as in Belinskii et aL (1972). 
The formulas (15)-(18) define an invertible change of variables from 

the d(d + l) functions g!j, K~ to the d(d + 1) functions ai, ki, and Aj. The 
new variables turn out to possess a simpler qualitative behavior. 

The analysis of the solutions of (10) starts by considering an epoch 
where the spatial gradients are dominated by the time derivatives in the 
Einstein equations, i.e. (Belinskii et aL, 1972), at the initial time, 

P~<< t-2(g,i)l/2(&j) '/2 (19) 

When the inequalities (19) hold, the integration of equations (10) yields 
the Kasner solutions 

i o i 
Aj = Aj (20) 

a , ( t )  = d,t  p, (21) 

~ i where A;, d~, and p~ are integration constants. The p~ are called Kasner 
exponents and are subject to 

d d 

Y P~= 2 P~=I  (22) 
i = l  i - -1  

The Kasner solution (20)-(21) holds as long as the condition (19) is 
fulfilled. Now, one sees from (11), (12), (15)-(18), and (20)-(21) that in 
the Kasner frame oJi, the diagonal components t2pi of the spatial curvature 
involve the terms 

Aok=--a~ [1 G (i~.L i r  j # k )  (23) 
s ~ i , s ~ , j , s ~ k  

Furthermore, these terms all appear in t2Pi if none of the structure constants 
Cjk with three different indices (i # j ,  i # k, j # k) vanishes in the Kasner 
basis. 

As we will show below, this latter condition, which does not hold in 
the canonical bases o~ i when d-->4 (Demaret et al., 1986; Jensen, 1987) is, 
however, generically verified in noncanonical bases for interesting groups, 
even when d-->4. So, let us assume Cjk~O ( i~j ,  i # k , j # k ) .  

The conditions (19) with i = j  are then equivalent to 

A!jkk/A << 1 (24) 
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where 1/k  denotes the order of magnitude of the distances (determined by 
C~k) over which the metric varies significantly in a coordinate basis, and 
where A is the product  d id2 . . ,  de, so that 

~,/g= At (25) 

If one replaces ai by f P~ in Auk , one finds 

Auk = t ~~ (26) 

~ k = 2 P i  + Z P.~ ( i ~ j ,  i # k ,  j ~ k )  (27) 
s,~i,s;~j,s~k 

As shown in Demaret et aL (1985a) and recalled above, the exponents c~0k 
can all be taken strictly positive for d -> 10 [so that A0k ~ 0  as t-~0 and (23) 
remains fulfilled], while for d -< 9, at least one aijk is negative. If the Kasner 
exponents are ordered, pl < - - p z < ~ p 3  " ""  < ~ P d ,  one then has 

eqd-,d < 0  (28) 

This implies that the condition necessary for the validity of the Kasner 
solution cannot be fulfilled permanently as t ~ 0 and that the Kasner solution 
will be replaced by another one as one approaches the singularity (Belinskii 
et al., 1970; Demaret et al., 1986). 

This new solution is obtained by integrating the Einstein equations, 
keeping the nonnegligible spatial curvature terms. If one disregards the case 
of small oscillations--which does not appear to change qualitatively the 
conclusions (Belinskii et al., 1970)--the dominant nonnegligible term is 
Ald-ld,  i.e., when 

A~d ldk/A-~ 1 (29) 

All other Aijk still obey (24). In that case, only Ala-~d needs to be retained 
in the diagonal Einstein equations. The condition of applicabliity of this 
approximation is clearly 

al >> a2 > >  a 3  �9 �9 �9 ad-2 > >  ad-I  > >  ad (30) 

and it will be assumed throughout (case of "nonsmall oscillations"). 
It is easy to check that the terms present in the off-diagonal components 

of the spatial Ricci tensor are all negligible compared with A1,-ld,  so that 
the off-diagonal equations remain satisfied to zeroth order, even when A~a-~d 
is not small in the sense of (29). 

Thus, to that order, the change in the Kasner solution is induced by 
the sole diagonal equations, which replace the Kasner exponents Pi by new 
ones p~ according to the rule (5)-(7) (Belinskii and Khalatnikov, 1973; 
Demaret et aL, 1986). 
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Now, the crucial point is that another collision will follow (5)-(7) and 
the same scenario will repeat itself indefinitely as t ~ 0. This is because 
C~k~O ( i ~ j ,  i ~  k, j ~  k) in the Kasner basis w i, so that it is guaranteed 
that a final Kasner regime can never settle down since the validity conditions 
(19) for such a regime always ultimately get violated by at least one term. 

One thus sees that the qualitative behavior of a homogeneous cosmo- 
logical solution (with C~k ~ O, i ~ j, i ~ k, j  r k) is characterized by an infinite 
series of  collisions according to (5)-(7), which is known to exhibit interesting 
chaotic properties (Elskens and Henneaux, 1987a, b; Elskens, 1987). The 
conclusion is therefore that spatially homogeneous cosmological models which 
are not diagonal in the canonical basis (so as to have C~k ~ 0 for different 
indices in the Kasner basis) do possess the interesting features of  their 
inhomogeneous generalizations. 

As a final point, we have investigated in more detail the conditions 
under which Cjk # 0 (i ~ j ,  i # k, j # k) in a generic noncanonical basis. 
There are two features which could force Cjk ~ 0 ( i r j, i ~ k , j  ~ k) to vanish 
in any frame: 

(a) The group is too "trivial" (e.g., in the Abelian case, Cjk clearly 
vanish in all invariant frames). 

(b) The spatial constraints (14) could restrict Aj in such a way that 
one Cjk is zero for all triples of different indices. This second 
possibility arises, for instance, for Bianchi types II, IV, VI, or VII 
in (3+ 1) dimensions. 

However, we have explicitly found spatial homogeneity groups such 
that Cjk (i ~ j ,  i r k , j  ~ k) differs from zero in a generic noncanonical basis, 
compatible with the spatial constraints. These are class A groups (C~i = 0) 
of the type G13[(4+1) dimensions (Fee, 1979)], G13| [ (5+1)  
dimensions], S 0 ( 3 ) |  [ (6+1)  dimensions], S 0 ( 3 ) | 1 7 4  
[ (7+ 1) dimensions], SU(3) [ (8+1)  dimensions], or SU(3 ) |  U(1) [ (9+1)  
dimensions]. By a linear transformation of  the structure constants, one can 
find a frame where C~kr 0 (i C j, i r  k, j ~  k) and where the constraints 
(14) are satisfied. In such a frame, the condition for an infinite number of 
collisions is satisfied. 

As an explicit example of  a spatially homogeneous model with d-< 9 
which exhibits the chaotic behavior, we consider a model in 8 spatial 
dimensions, invariant with respect to the group of spatial homogeneity 
SU(3) (de Rop, 1988). If the transformation between the canonical vector 
basis J~ and the general basis Xi is chosen as infinitesimal, i.e., 

X, = ( ~ -  e~)J~j (31) 

where e[ are infinitesimal constants, the modification of  the canonical 



Are Kaluza-Klein Models of the Universe Chaotic? 1077 

structure c o n s t a n t s  Cjk, is given, at first order in e, by 

r  k i ~ m m ~ i m ~ i 
= e m C j k  - -  e j  C r n  k - e k C j m  (32) 

Moreover, the constraint equations (14) can be written, in the case of a 
class A group (C}/=0) such as SU(3),  as 

pk,SCkk = 0 (33) 
k 

If one chooses now the generators of SU(3) such that the group metric 
tensor be a multiple of unity, which ensures that the C~k will be completely 
antisymmetric (Gilmore, 1974), the constraints (33) become, after transfor- 
mation (31 ) ,  

2(e 3+ 832)(P3 -P2) -- ( eT + e4)(P4--P7) + ( e6 + e65)(P5 --P6) = 0 

--2( e3 + el)(Pl --P3) + ( e6+ e4)(p4--P6) + ( eT+ e57)(P5 -P7)  = 0 

2 1 5 2(el + 82)(pl --P2) + (e4-~ E4)(P4 --P5) -- (E6 7-[- e6)(p6 --P7) = 0 

7 (e, + e~)(p, -P7)  + ( e6+ e62)(p2 -P6)  

+ (e35+ 63)(P3-Ps) - x /3 ( e~+  e~)(p 5-p8)  = 0 

( e 6 -  e l ) (P , -P6)  - ( eT+ e~)(pz -P7)  (34) 
4 3 "3i- (e3-~- e4)(P3 --P4) + x/3 (e 4+ el) (p8 --Pn) ---- 0 

5 - ( e ~ + e ~ ) ( p l - p s ) +  4 (~2+ e])(p2-p4) 

+ (e~+ e~)(p3-pT) - ~  (e~+ e~)(pe-pT) = 0 
4 5 2 (e, + e~)(p, --p~) + (~2+ e~)(p2-p~) 

8 6 -- ( e6+ e63)(p3--P6) -- v/-3 (e6 + e8)(P6--Pe) ---- 0 
5 4 (e4+ es ) (p4-ps)  + (e 7+ e6)(P6-P7) = 0 

These relations are satisfied if, e.g., all combinations (e, J. + e~) appearing 
in (34), i.e., the 6C~k (without summation), Vi, k, are made vanishing. On 
the other hand, it can be easily checked that the 6C~k (i : j ,  i ~ k, j ~ k) 
are all different from zero and do not contain any term of the form (e,J+ e~). 
This is sufficient to show that, despite the constraints (34), the coefficients 
of  the "dangerous"  terms in Po (i.e., terms which could diverge at least as 
fast as t -2 as t--> 0) all vanish for a general basis. We are thus led to the 
conclusion that the vacuum nondiagonal spatially homogeneous model, 
invariant with respect to SU(3),  is chaotic near the cosmological singularity. 

In fact, the general result reported here is similar to the analysis of  the 
coupled scalar Maxwell-Einstein system in (3+ 1) dimensions (Belinskii 
and Khalatnikov, 1973). When the Maxwell field is set equal to zero, the 
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chaotic behavior disappears. But if a nontrivial Maxwell field is included, 
the oscillatory regime is restored. Now, an electromagnetic field can be 
viewed, along Kaluza-Klein lines, as nandiagonal metric components in 
higher dimensions. This therefore confirms our results. 

5. CONCLUSIONS 

The results described here have, in our opinion, settled the question 
of the type of behavior of general vacuum inhomogeneous and spatially 
homogeneous cosmological models in the neighborhood of the initial singu- 
larity, at least in the framework of the approach of the Russian school 
(Belinskii et al., 1970, 1972; Khalatnikov and Lifshitz, 1963; Belinskii and 
Khalatnikov, 1973). 

Extensions of this work should be carried out in two directions: a 
detailed study of the role played by the matter fields and the consideration 
of higher-order gravitational Lagrangians, as required, e.g., by superstring 
theory. Partial results have recently been obtained on these problems: the 
influence of the dilaton field and of the three-index tensor field, H on the 
very early behavior of a generalized Friedmann universe has been studied 
in the context of the ten-dimensional superstring theory (Henriques and 
Moorhouse, 1987; Liddle et al., 1989), while it has been shown that the 
chaotic behavior characteristics of the Mixmaster model in four dimensions 
disappears in a gravity theory derived from a purely quadratic gravitational 
Lagrangian, giving rise to the monotonic Kasner-like behavior (Barrow and 
Sirousse, 1988). 
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